Recent developments with metalloprotease inhibitor class of drug candidates for botulinum neurotoxins.

نویسندگان

  • Gyanendra Kumar
  • Subramanyam Swaminathan
چکیده

Botulinum Neurotoxins are the most poisonous of all toxins with lethal dose in nanogram quantities. They are potential biological warfare and bioterrorism agents due to their high toxicity and ease of preparation. On the other hand BoNTs are also being increasingly used for therapeutic and cosmetic purposes, and with that the chances of accidental overdose are increasing. And despite the potential damage they could cause to human health, there are no post-intoxication drugs available so far. But progress is being made in this direction. The crystal structures in native form and bound with substrate peptides have been determined, and these are enabling structure-based drug discovery possible. High throughput assays have also been designed to speed up the screening progress. Substrate-based and small molecule inhibitors have been identified. But turning high affinity inhibitors into clinically viable drug candidates has remained a challenge. We discuss here the latest developments and the future challenges in drug discovery for Botulinum neurotoxins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.

Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-t...

متن کامل

Structural insight into exosite binding and discovery of novel exosite inhibitors of botulinum neurotoxin serotype A through in silico screening

Botulinum neurotoxin serotype A (BoNT/A) is the most lethal toxin among the Tier 1 Select Agents. Development of potent and selective small molecule inhibitors against BoNT/A zinc metalloprotease remains a challenging problem due to its exceptionally large substrate binding surface and conformational plasticity. The exosites of the catalytic domain of BoNT/A are intriguing alternative sites for...

متن کامل

Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity.

Botulinum neurotoxins (BoNTs) are among the most lethal biological substances to have been weaponized and are listed as biodefense category A agents. Currently, no small molecule (non-peptidic) therapeutics exist to counter this threat; hence, identifying and developing compounds that inhibit BoNTs is a high priority. In the present study, a high-throughput assay was used to identify small mole...

متن کامل

The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins

The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities...

متن کامل

Toward the discovery of dual inhibitors for botulinum neurotoxin A: concomitant targeting of endocytosis and light chain protease activity.

Dyngo-4a™ has been found to be an endocytic inhibitor of BoNT/A neurotoxicity through dynamin inhibition. Herein, we demonstrate this molecule to have a previously unrecognized dual activity against BoNT/A, dynamin-protease inhibition. To establish the importance of this dual activity, detailed kinetic analysis of Dyngo-4a's inhibition of BoNT/A metalloprotease as well as cellular and animal to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current topics in medicinal chemistry

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2015